Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36107887

RESUMO

Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.


Assuntos
Marcha , Caminhada , Adulto , Fenômenos Biomecânicos , Eletromiografia/métodos , Marcha/fisiologia , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Adulto Jovem
2.
Adv Sci (Weinh) ; 6(14): 1900149, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380204

RESUMO

Muscle function loss is characterized as abnormal or completely lost muscle capabilities, and it can result from neurological disorders or nerve injuries. The currently available clinical treatment is to electrically stimulate the diseased muscles. Here, a self-powered system of a stacked-layer triboelectric nanogenerator (TENG) and a multiple-channel epimysial electrode to directly stimulate muscles is demonstrated. Then, the two challenges regarding direct TENG muscle stimulation are further investigated. For the first challenge of improving low-current TENG stimulation efficiency, it is found that the optimum stimulation efficiency can be achieved by conducting a systematic mapping with a multiple-channel epimysial electrode. The second challenge is TENG stimulation stability. It is found that the force output generated by TENGs is more stable than using the conventional square wave stimulation and enveloped high frequency stimulation. With modelling and in vivo measurements, it is confirmed that the two factors that account for the stable stimulation using TENGs are the long pulse duration and low current amplitude. The current waveform of TENGs can effectively avoid synchronous motoneuron recruitment at the two stimulation electrodes to reduce force fluctuation. Here, after investigating these two challenges, it is believed that TENG direct muscle stimulation could be used for rehabilitative and therapeutic purpose of muscle function loss treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...